Super Chevy
Click here to find out more!

505 Big Block Chevy Motor - Big-Block Street Heat

Here's 700 Horses And 650-Plus Lbs-Ft From A 505-Inch, Pump Gas Big-Block Chevy That We Closely Watched Costs On.

If you're interested in a pump gas, big-block Chevy street driver that makes a very stout 1.3 lbs-ft of torque per cube along with enough hp to put a John Deere tractor into the 9's then this build might be for you. Add its cost conscious budget and good looks, and it could be just what you want to see in your street machine.

The beginnings of this engine came when Kevin Feeney, RHS's expeditor of all good things related to cylinder head production, called and asked if I would like to test its then-new street big- block Chevy head. I had this feeling that I could get pulled, even against my better judgment, into just about anything that looks exciting, so before engaging my brain my mouth is already up and running. "Sure, just send me a pair and I will take it from there." Well about the time the heads arrive I realize that it takes a little more than just having a dyno-I also needed an engine.

That was the not so good news. Fortunately this was countered by the fact that I know a ton or more of top-notch engine builders. Lloyd McCleary of T&L engines, who is a bonified NASCAR engine builder who has had great success on the track at the top levels of competition. Lloyd had a line of dyno proven big-block Chevy crate motor builds that range from 454 to 640 inches so the plan was to use the heads on one of these. The RHS heads targeted big-block Chevys in the displacement range from 454 to about 540 inches so to be as near representative of both ends of that spectrum a 505 inch engine was chosen.

Block & Rotating Assembly
To get 505-inches with the planed 4.25-inch inch stroker crank required a block that would bore safely to .100-inch-over, bringing the finished bore size to 4.350 inches. Lloyd had a block in his inventory that, after sonic testing, showed it would go to this size with meat to spare. Unfortunately it was a 2-bolt mains block so the first job here was to install 4-bolt steel mains caps. After this the block was decked true to the mains then bored and deck plate honed. When all the machine work was done the block went through a detailing procedure to remove casting flash before being finished in high-gloss engine enamel. The last step was to install the Calico-coated cam bearings and the block was ready to start accepting the rotating assembly.

The engine was destined to go in a street rod that also needed to be capable of fast passes down the strip. For this build the owners also needed 650 hp and 7000 rpm capability. This requirement meant that a very cost effective rotating assembly could be specced out. For the crank, a Scat 9000 series cast steel 4 1/4 stroker crank was chosen. These have proved more than reliable in such applications to power levels of 750 or so horses. Because they use so much Scat stuff, T&L can do a good deal on rotating assemblies, either cast or forged. With their hollow journal, windage-reducing aero design, the Scat 9000 series cast cranks represent a very viable performance upgrade for any 454.

After balancing the rotating assembly, the crank went into the block with Calico coated main bearings and the caps installed using ARP 6 point mains bolts. The rods used were Scats street/strip forged H beam 6.385-inch-long (0.250-inch longer than stock) rods featuring all the goodies seen on race rods. These were chosen in part for their high strength and for having less weight than may budget orientated H beam rods. With less weight in both the rod and the chosen piston, from Ross, the bottom end balanced up without the use of expensive heavy metal slugs.

For the pistons it was necessary to have Ross make us up some custom items so we could nail the 10.5:1 compression ratio with the RHS heads right on the money. We were rewarded with a nice looking set of pistons that weighed in at a very respectable low weight. By using the 250 long Scat rod with the 4-1/4 inch stroker crank the stock rod/stroke ratio was almost maintained and left a compression height of 1.165 inches. With the 1/16 - 1/16- 3/16 Total seal ring pack being used, the pin bore intruded into the oil ring groove necessitating the use of a steel support rail type oil ring assembly. The rings used for this engine were from Total Seal.

Cam and Cam Timing
When it came time to select the cam for this engine, the heads were already ported and the flow characteristics throughout the lift range known. Using the latest version of the Cam-Master program the valve opening event timing was computed for the 6200 rpm to peak power called for. To give an idea of how accurate this program is the dyno tests showed peak power to be within 100 rpm of this computed value.

As for the profiles themselves, this was decided after it was learned from Comp Cams math whiz kid Billy Godbold that some of his relatively new NASCAR Busch series solid roller profiles would meet our needs. Top of the "need-to-have" list was reliability with high lift. This meant the use a moderate spring so the dynamics would have to be something special if the high lift requirement was to be met. We also needed a reasonably quiet valvetrain because it is a street rod we are powering here not an open exhaust Busch Grand National car.

The eventual profiles chosen were not of overly long period but they did get with the program in terms of opening and closing rate. For the intake, an SP-series roller with an advertised duration of 279 degrees was chosen (profile #4788); for the exhaust a slightly less aggressive RP profile of 284 degrees advertised duration was selected. These, with 1.7:1 Comp Cams rockers, delivered a gross valve lift of 0.653- and 0.648-inch respectively. As short as these profiles look at the 0.020 lifter rise used for the quoting advertised duration, they are longer by about 14 degrees at the lash point. This makes the seat duration, at 293/298 look a little on the long side for a street cam.

This would be the case if big-block Chevys had more appropriate valve sizes for the displacement involved but the truth is they are grossly under-valved. This makes them less sensitive to the negative effects of long duration cams or, putting it another way, any duration figure looks a lot smaller (by typically 10-15 degrees) in a big-block than in a small-block.

With the lobes selected, Cam-Master was used to determine the Lobe Centerline Angle. With the figures input a result of 106.5 degrees was called for so we settled on 107. This was ground at 4 degrees advance. Motion from the cam profile was transmitted to the valves via a set of Comp Cams Endure-X solid roller lifters, 3/8th Magnum pushrods and aluminum 1.7:1 rocker arms.

After loading the cam into the block it was timed in. An important fact is that the more accurately a cam is specced out the more it can lose by being incorrectly timed into the engine. To make sure the cam could be timed right on the money a Comp Cams fully adjustable cam timing set was used. This allowed us to hit the required 103 degree intake centerline required right on the money.

Head Games
Any performance engine is only as good as the cylinder heads. This applies to a big-block Chevy more than it's little brother. Why? Because big-block heads, even with the largest valves typically used, has a lot less valve area per cube than a small-block. The numbers really bring this home in case you are wondering just how short of valve area a big-block sporting 2.3-inch valves can be. For a 350-inch small-block with the normally used 2.02 intake, the valves have to feed 13.65 cubes per square inch of valve. For a big-block like ours the intake valve sizes used are typically 2.25 or 2.3. For the 505 we are building this results in each square inch of intake having to feed 15.2 cubes. To get the same cubes per square inch our big-block would need intake valves about 2.43-inches diameter. As a result the heads used must flow well for the size of valves involved or output, especially at the top end, will really suffer. So why not just put in bigger valves? The problem here is that much over 2.35-inches diameter the inclined valves can clash during the overlap period if too much cam is used.

Continuing our comparison of valves and flow of the small-block versus big, we find that a well really ported small-block head can flow about 290 cfm at 0.700 lift. To stay on par with this our big-block heads need to flow about 410 to 420 cfm at 0.700 lift. Now before getting bent out of shape should that goal not be reached, there is a point of salvation for the rat that is not available to the mouse. Because a big-block has inclined valves shrouding on the way up to about 0.0600 lift is less than on a small-block and, as a result, the midrange flow of a big-block has the potential to be better, size for size, than a small-block. This means we only have to closely approach our target flow to get comparable small block hp per cube from our 505.

On our bench, the as cast RHS heads, at 0.700 lift, flowed some 380/371 cfm for the good and bad intake ports respectively and a creditable 264 for the exhaust. These are very respectable figures and rank a tad higher than average. Also, if you take into account that we elected to use the small port (320 cc) heads then it can be seen that these heads are good right out of the box. But as good as they were, I have to say that their strong point was the ease with which they ported. Doing little more than skinning up the guide bosses and blending out the short side turns and any other less than perfect areas resulted in some good numbers. The mid range flow was also creditably strong with part of this being due to us substituting the normal used 2.25-inch intake for the small port head with the 2.3-inch intake for the large port head.

Coupled to this LJ, T & L's top head porter, also did a Cup Car style valve job on the intake seats during the install of the larger 2.3-inch valves. All this porting was quickly executed and the result was 405/401 cfm at 0.700 for the good and bad intake and 286 cfm for the exhaust. With these results in hand we began to feel confident that the 650 hp target was going to be an easy deal.

With the heads done and assembled the next job was to install them on to the short block. Here we used Fel Pro high performance gaskets and ARP six point head bolts. These were torqued to the appropriate value and, at this point, we put aside any further moves on the top end and turned our attention to the lubrication department downstairs.

For our bottom end, we used a Moroso oil pump, pick-up and basic street/strip pan. We selected a Professional Products crank damper for torsional control of our stroker crank. When these dampers were first introduced I was a little leery that anyone could build a decent damper for so little money. A few years down the road and a lot of dampers later, with no problems, so it looks like it can be done. If you are doing a build and installing an aftermarket damper you need to be aware that no damper should be installed in any manner other than with a proper damper installing tool. I realize it is an expensive piece for the at home builder, but you don't have to buy one to get the use of one. Just go to your local AutoZone and they will loan you one free.

Valvetrain & Induction
Starting with the rollers, we used Comps Endure-X solid roller lifters. These are designed to put up with whatever abuse a fast opening cam delivers with sufficient strength margin to allow a long street life. In short they are ideal for our application here. For pushrods Comp's Magnum design in 3/8th diameter were selected. The final selection on length was completed after a trial build of the valve train had revealed what the optimum length would be. Getting that pushrod just right on a big-block can often be critical due the angled valvetrain geometry.

For rockers Comp's tried and tested basic aluminum 1.7:1 rockers were used. Partly as a result of the pushrod length selection their rockers delivered a tad over 1.7:1, thus adding a few thousandths to the theoretical valve lift. For valve springs we ran those that came with the heads-after all RHS is a subsidiary of Comp Cams so it should know what works in this department.

In spite of being genetically disposed toward selecting "too much" of anything that looks like more power, I continually see the reverse for a big-block Chevy engine. Unless it's a really small big-block (396 maybe) there is really no place for a 4150-style single four-barrel Holley on 505-inch big-block with a target output of 650-plus hp. To meet our 505's induction requirements a 1050 Holley Dominator was chosen along with an appropriate Weiand Team G single-plane intake. The intake was port matched to the heads and the rest of the runners given a coarse (80 grit) emery roll clean up. This was in preparation for an intake coating test that we planed to do with this motor but subsequently ran out of time on. On the flow bench this clean up made very little difference to the flow and while it may have contributed to the engines output it is doubtful that it did so by much.

As for the carb, I don't know how lucky we were here, but as we were to subsequently discover, the jetting and overall calibrations proved very close to optimal.

Dyno Time
This engine was broken in and dyno tested with fuel from the gas station just down the road. After a post break in oil change and a re-lash of the valves, a full power run was made and we were pleased to see the numbers fly right over our 650 hp target and land smack in the middle of the 690s. A look at the plugs and the dyno air/fuel readout indicated that this 505's carb calibration might be just a mite too lean. This prompted a step up on the jets of two sizes all around. About this time, the owners arrived just in time to see their motor go 697.8 hp and 657 lbs-ft. To say they were ecstatic would be an understatement. On the other hand Lloyd and I were a little put out that the final number did not top the 700 hp mark as that sounds a bunch better than 698.

It was obvious that the original Holley jetting on this carb was really close to optimal as our change to two sizes bigger jets only made a very small difference. From the dyno data we figured that though our 1050 Dominator had performed magnificently we may have chosen one that was slightly too small.

Conclusions
After watching this good looking big-block disappear down the road in the back of a truck, Lloyd and I sat down to take a hard look at the dyno printouts. The first question we asked ourselves was did the RHS heads work as we had expected. Answer: They certainly did, to the extent we planned to re-visit them for a test on a bigger, more powerful engine such as a 540 or even a 572. The street price for these heads is likely to be around $2,200 while a whole T&L built engine just like you see here will set you back $7,749 with a cast crank or $7,995 with a forged one. However you need to be aware that upgrading to a 540 or 572 incher is only about a grand extra and either of these will go well beyond the 700 hp mark.

RHS big-block Chevy 320 head flow tests.

LIFT BAD IN GOOD IN EXHAUST
100 77.1 77.1 62.1
200 161.3 161.7 125.8A
300 228.7 231.1 162.4
400 291.8 295.7 195.6
500 346.1 350.9 222.7
600 375.0 382.7 245.9
700 371.1 383.7 264.4

Here are the "as cast" numbers for the RHS heads.

LIFT BAD IN GOOD IN EXHAUST
1100 78.8 78.9 68.8
200 162.2 163.2 132.5
300 234.5 235.5 179.1
400 298.9 302.1 215.2
500 350.9 356.2 243.8
600 387.3 393.3 268.2
700 401.1 404.9 286.2

Even as cast there is enough airflow From the RHS 320 heads for 700 hp on a 540-inch engine. When simple porting techniques (that is no more complex than a near beginner might do over a couple of week ends at home) are applied the numbers look even better. The figures achieved with the T&L ported heads are as below.

SOURCES
AED Carburettors Racing Head Service
9-01/-259-1134
www.racingheadservice.com
Competition Cams
Memphis
TN
8-00/-999-0853
compcams.com
Ross Racing Pistons
625 S. Douglas Ave.
El Segundo
CA  90245
310-536-0100
Moroso Performance Products Inc. Scat Enterprises Inc.
1400 Kingsdale Avenue,
Dept. MMFF
Redondo Beach
CA  90278
Professional Products
Hawthorne
CA
3-23/-779-2020
professional-products.com
  • «
  • |
  • 1
  • |
  • 2
  • |
  • 3
  • |
  • View Full Article
Enjoyed this Post? Subscribe to our RSS Feed, or use your favorite social media to recommend us to friends and colleagues!
Super Chevy