Monte Carlo SS Project - Building A Hell-Raiser

Starting With A Solid Foundation, We Finally Begin Building Our Procharged Powerplant For Project True Sstreet.

Dan Ryder Aug 1, 2008 0 Comment(s)
Sucp_0808_02_z Monte_carlo_ss_project Little_m_block 2/24

Hell-Raiser, Part 1
Before jumping into Project True SStreet with both feet, much thought went into the engine combination. First thoughts for our '87 Monte Carlo SS had us building a monster Chevy big-block with either nitrous oxide or, better yet, a turbo or two. While the big-block would have shoehorned nicely into the G-body, nitrous can become an expensive habit, especially with a large 300-400hp shot. The bottle would require frequent fills throughout a race weekend.

Having 86'd the nitrous idea, we turned to possibly turbocharging the Monte. Turbo units have become the choice of many racers and street machine owners across the country, because they're easy on parts and they utilize wasted exhaust gases for propulsion. The turbo route was rather enticing, except for the fact that custom exhaust and inlet piping would have to be made to fit our application. They're not cheap, either. Since we're looking to cater to the average enthusiast, we opted to go with a simple supercharger system to propel Project True SStreet into the 8s.

Two types of superchargers came to mind-Roots and centrifugal. Roots-style units look wild and can produce gobs of power and torque out of the gate (low-rpm range); however, they often require hood modifications, never mind the added attention from the local authorities when cruising Main Street USA. After putting in a call to the extremely helpful staff at ProCharger, we decided to utilize its F-2 intercooled supercharger system, which comes complete with all that is necessary for a hassle-free installation. Oh yeah-it will also make some serious power to boot. More on the supercharger in Part 2 of "Building a Hell-Raiser." For now, let's get into the strength of the foundation needed to keep Project True SStreet together.

Sucp_0808_05_z Monte_carlo_ss_project Finishing_hone 3/24

The Little M block from Dart comes almost ready to roll; however, it will need a finishing hone, as well as a custom finish specified to the builder's liking. The main objective is to leave the cylinder walls as straight as can be and to provide the proper amount of crosshatch, which will offer proper oil retention and ring support. Incorrect crosshatch can lead to premature wear of the piston rings, possibly causing compression loss or even oil blow-by. Here, Ron Ross of Simonek Performance Machine (a division within M2) puts the finishing touches on our Dart block with a Sunnen CK-21 digital honing machine. The block retains the main caps and receives a torque plate to maintain proper geometry as if the engine is assembled. Before the block is dismounted, Ross uses a bore gauge to make sure all is within specified value (4.126-inch bore finished).

As previously mentioned, big-block power was in the plans during the early stages, but it was scrapped in favor of a lighter (lighter is faster) small-block. With today's technology, it's not unheard of to make 1,000-plus horsepower with a ProCharged small-block Chevrolet equipped with proper components. Since we will be running a 28-inch DOT tire out back, the torque of a big-block, coupled with the added horsepower of the juice or turbo, may have prevented a problem with keeping the tires planted on launch. Running a small-block with a centrifugal blower will generally allow us to have a larger power gain toward the middle and top of the rpm range, enabling the G-body to produce slightly less shock to the tire on launch, hence achieving hook, with the added feature of having less weight on the nose.

Sucp_0808_06_z Monte_carlo_ss_project Engine_dip 4/24

Once the block is completed, Ross hands it off to engine builder/racer Anthony DiSomma of M2. Before any building can begin, the block must be thoroughly cleaned. This includes all oil galleys, coolant passages, and any other exposed orifice. After the cleaning process is complete, the block gets blown out with compressed air and is mounted to an engine stand. At that time it is rolled into the engine assembly room, which is generally the cleanest area in the shop. Surgery/construction may now begin.




Connect With Us

Get Latest News and Articles. Newsletter Sign Up

subscribe to the magazine

get digital get print