How to Boost a 5.3L LS Engine to 611-Horsepower

Alternative Fuel - How to make 611-horsepower from a turbocharged, carbureted 5.3 LS engine

Richard Holdener Mar 3, 2014 0 Comment(s)
View Full Gallery

Since we already had the factory cam in place, on went the single turbo system from CXRacing. Designed to fit a fourth-gen F-body, we figure the kit might also fit common muscle-car swap applications. The kit was both simple and effective, consisting of dedicated tubular exhaust manifolds, a common Y-pipe to channel the exhaust to the single 76-mm turbo and a 3-inch down pipe. Also available (but not used) was an air-to-air intercooler. On this low-boost application, the carburetor was acting as the intercooler. Having measured temperature drops across the carburetor exceeding 100 degrees on high-boost application, we knew it would suffice on our mild turbo combo. The kit also included a dedicated wastegate set to provide 10 psi and since it was designed for an EFI application, we sourced some additional tubing, silicone couplers and clamps from CXRacing to complete our carb kit.

We ran the normally aspirated 5.3L with a 750 HP Holley but swapped this out in favor of a dedicated blow-through carb from Carb Solutions Unlimited (CSU). Changes by CSU to the standard Holley 850 were considerable, including the boosters, power valve and metering blocks to name a few. Bottom line: every time we used it, it flat out worked. Whether on a mild small-block with a turbo or a massive big-block with a blower, the CSU carb has never failed to deliver the goods. Testing on this 5.3L LM7 was no different. CSU also supplied the necessary carb bonnet to connect our turbo to the carburetor. Despite having come off a blown big block, minor jetting was all that became necessary to dial in the air/fuel mixture on the LM7. With our waste gate spring (no controller) set to provide 10.2 psi, we ran the turbo 5.3 first with the stock cam.

Using the map sensor capability on the MSD, we programmed the controller to retard timing under boost, dialing it back to 22 degrees (from 32). The turbo system provided a slightly rising boost curve and rewarded us with peak numbers of 527 horsepower and 520 lb-ft of torque. Registering a peak of just 10.2 psi, the turbo kit added an easy 192 hp and 154 lb-ft of torque.

After cooling the turbo and associated exhaust system, off cam the Y-pipe to provide access for the cam swap. We chose a mild, streetable cam from Crane. Designed for mild performance street use, the Crane grind offered .585 lift, a 216/224 duration split and turbo-friendly 114 LSA. Swapping cams in an LS (especially on the engine dyno) is something we look forward to rather than dread. There was no need to drop the pan, damage any gaskets or even remove the intake manifold.

After swapping in the cam, we reassembled the turbo system and ran the new configuration in boosted form. Equipped with the new Crane cam, the peak power jumped to 611 hp and 565 lb-ft at a peak pressure of 9.9 psi. The cam swap netted a gain of 84 hp and 45 lb-ft of torque, clearly demonstrating that turbo LS engines respond very well to cam swaps. Now the question was how would these improvements under boost compare to the normally aspirated gains.

Off came the CXRacing turbo system and on went the long-tube headers and 750 Hp carburetor. No changes were necessary to the carburetor, but we did adjust the timing curve to provide 32 degrees (where best power occurred). Upgraded with the Crane cam, the peak power numbers checked in at 411 hp and 393 lb-ft of torque. The power was actually still climbing at our shut off point of 6,000 rpm. In normally aspirated trim, the cam swap was worth 76 hp and 27 lb-ft of torque. This compares to 84 hp and 45 lb-ft of torque with the turbo. We actually expected a slightly bigger difference in power with the turbo, but that is why we go to the trouble to test these theories on the dyno.

What the test did show was that it is possible to take a cheap, carbureted LS motor and add boost. If EFI systems are too complicated or expensive, why not take the alternative fuel route and stick a carbureted LS under the hood of your early Camaro or Chevelle? Need more power? With the right carb and MSD controller, you can always add boost.

Attach Manifolds Y 2/21

10 Using supplied V-band clamps, the two manifolds were attached to a common Y-pipe used to mount the turbo and waste gate.

76mm Turbo 3/21

11 The kit was supplied with a 76mm turbo capable of supporting over 700 hp, so we knew it was more than adequate for our stock 5.3L.

Csu 850 Holley 4/21

12 CSU supplied this boost-ready 850 Holley. Modified to run properly under boost conditions, the CSU carb has been run successfully on a variety of different blow-through applications.

Csu Carb 5/21

13 CSU also supplied its carb bonnet. Unlike others, this design seemed to be less sensitive to orientation on the carb. Since the turbo kit was designed for a throttle body/EFI motor, we secured additional tubing, couplers and clamps from CXRacing to complete our carb system.

Install Race Port Blow Off 6/21

14 To eliminate compressor surge, which happens when you close the throttle at full boost, we installed this Race Port blow off valve from Turbo Smart.

Dyno Test Stock 7/21

15 Run on the dyno in turbo trim with the stock cam, the boosted 5.3 produced 527 hp and 520 lb-ft of torque at a peak boost pressure of 10.2 psi.

216 Crane Cams 8/21

16 We performed a cam swap next and added the Crane 216/224 cam.

Dyno Test Crane 9/21

17 The Crane cam improved the power output of the turbo motor from 527 hp and 520 lb-ft of torque to 611 hp and 565 lb-ft of torque, while offering a slight drop in boost pressure.

Dyno Graph Crane Cam Swap 10/21

18 Tested in normally aspirated trim, the Crane cam swap increased the power output of the carbureted 5.3L from 335 hp and 366 lb-ft to 411 hp and 393 lb-ft.

Dyno Graph Crane Cam 11/21

19 The cam swap was worth a great deal of power on the carbureted turbo combinations as well, jumping from 527 hp and 520 lb-ft to 611 hp and 565 lb-ft.


Contacts


CSU
909-851-6955

Sources

Crane Cams
Daytona Beach, FL 32117
866-388-5120
http://www.cranecams.com
Aeromotive
Lenexa, KS 66214
913-647-7300
http://www.aeromotiveinc.com

COMMENTS

TO TOP