GM V LT1 Engine Details - Gen 5 Unleashed

The all-new LT1 small-block, coming soon to a C7 near you

Chris Werner Mar 3, 2013 0 Comment(s)
Gm Gen V Lt1 Engine Front 1/21
Gm Gen V Lt1 Engine Lt1 Badge 2/21

New generations of small-blocks are generally accompanied by fanfare, ticker-tape parades, and claims of the greatest thing since Nutella hit sliced bread. But will some ignore the Gen V release as a simple marketing ploy for an LS engine that just has its fuel injectors in a different place? That would be a poor choice on their part, because not only does the new LT1 differ significantly from all small-blocks before it (and is easily the biggest thing since the LS1), its advancements work together to simultaneously increase fuel efficiency, lower emissions, and bump power potential. And while the Gen 5 is sure to bring new challenges to the aftermarket, so did the LS1… then as now, opportunity knocks for talented folks who are brave enough to blaze new trails.

Gm Gen V Lt1 Engine Sketch Right 3/21

Chevrolet’s press materials spend a lot of time comparing the first Gen 5 to the current Corvette base engine. But it’s more instructive to contrast it with the first of the Gen IIIs, because it’s easily the biggest thing since. While “99.9%” new, at first glance the LT1 illustration doesn’t look that much different from that of an LS1. Yet important innovations can be picked out, such as DI, VVT, and AFM components - even the splayed nature of the valves can be seen.

Corvette Leads the Way

In the time leading to any Corvette engine’s debut, the automotive world wonders aloud whether it will “finally” be an overhead-cam design. Of course, it never is (C4 ZR-1 excepted). What generally follows is a time period of critics and skeptics wondering aloud why it isn’t.

Wake up and smell the coffee, people: the pushrod design architecture continues because it’s the only one GM designers feel meets the needs of the Corvette, the car that defines every generation of small-block before it trickles down to everything else in the lineup. These needs comprise an engine that is not just powerful, efficient, and durable, but also compact and lightweight. The pushrod architecture is a shoe-in for these final two goals as it allows for an externally smaller, lower-profile engine, yielding a drop in the center of gravity and a lower hoodline – hello badass handling and top-notch aerodynamics.

Gm Gen V Lt1 Engine Sketch Left 4/21

Chevrolet’s press materials spend a lot of time comparing the first Gen 5 to the current Corvette base engine. But it’s more instructive to contrast it with the first of the Gen IIIs, because it’s easily the biggest thing since. While “99.9%” new, at first glance the LT1 illustration doesn’t look that much different from that of an LS1. Yet important innovations can be picked out, such as DI, VVT, and AFM components - even the splayed nature of the valves can be seen.

In terms of output, the LT1 will make somewhere in the neighborhood of 450 horsepower (the final figure will likely be released about the time you read this). Peak power numbers never tell the whole story of course. Case in point: we’ve been told to expect a 50 lb-ft. torque increase in the low to mid range versus the LS3, and even more torque than the LS7 below 3000rpm.

LT1 Overview

Like the original 1955 Turbo-Fire, the Gen 5 is still a 16-valve, cam-in-block 90-degree V-8 with 4.4-inch bore spacing. It’s unlike the original small-block Chevrolet in pretty much every other way. (It’s also unlike its namesakes, the solid-lifter 1970 LT-1 and reverse-cooled 1992 LT1, in all ways except pronunciation.)

Cues from the beloved LS-series are more apparent. Like the 1997 LS1, the Gen 5 LT1 features aluminum-block construction, 6-bolt main caps, and a composite intake manifold. The LT1 even shares the same 4.065-inch bore, 3.622-inch stroke, and 376 cubic inches (6.2L) with the latest base Corvette engine. Yet the only physical parts that carry over from the latest LS motors will fit in the front pockets of your greasy garage jeans (some miscellaneous bolts, piston pins, valve spring retainers and locks, and a crank key).

The LT1 really starts upping the ante when it comes to new technology. Active Fuel Management (AFM) and Variable Valve Timing (VVT) are new to the Corvette, and possibly the biggest news of all is the LT1’s Direct Injection (DI) - a first not only for a GM V-8, but for any overhead-valve engine in the world. This new fuel delivery system pays dividends in efficiency, emissions, and in helping to enable an aggressive compression ratio of 11.5:1.

Gm Gen V Lt1 Engine Intake Manifold 5/21

Advanced EFI, Advanced Combustion System

Direction Injection (DI) is also known as SIDI (Spark Ignition Direct Injection) or GDI (Gasoline Direct Injection) to distinguish it from systems used on diesels. GM has been in the business of DI for several years now, with its first application for the U.S. market being the 2.0L turbocharged LNF that saw use in the Solstice/Sky and Cobalt a few years back. (Owners of 3.6L fifth-gen Camaros also have DI under the hood.)

The LT1 brings this latest and greatest form of EFI to the small-block V-8 for 2014. Port Fuel Injection (PFI) systems, used on small-blocks ever since the Tuned Port Injection days, work by squirting fuel into the intake ports upstream of the intake valves. DI opts instead to deliver that fuel directly into the cylinder during the intake stroke - not at the usual 50 or so psi, but at over 2,000 psi depending on engine load - resulting in superior fuel atomization and a more efficient burn of the air/fuel charge. (For more details on DI and its differences from PFI, see “Get to Know Your EFI,” November 2012.) DI also enables some “tricks” that were impossible to implement with older-style EFI systems, including a really neat cold-start routine, explains John Rydzewski, Assistant Chief Engineer for Small-Block Engines. “At startup, there are two injection events, a short pulse early and a second pulse late [both during the intake stroke]. The combustion gases from the later injection of fuel will still be hot when they exit into the exhaust, which helps heat up the catalytic converter more quickly. This gets the engine controller into closed loop quicker.” Another DI system dividend is the ability to run a leaner air/fuel mixture.

The LT1’s compression ratio is a full half-point higher than the highest-compression Gen IV, the LS7. Thank advanced technology and engineering for enabling such a high static compression number, while even allowing for use of 87-octane gasoline on days you are feeling stingy (hopefully those days are not track days - premium fuel will be needed to extract all 450-ish horses). The first major enabler is the aforementioned DI, which is great at cooling the air-fuel charge since the energy to evaporate the fuel comes from the gas phase in the cylinder; with PFI, this heat energy came in part from the port walls and valves. Taking the heat out of the gas rather than out of metal helps cool the charge, so you end up with cooler in-cylinder temperatures heading into the compression stroke. A lower-temperature starting point means the charge can be squeezed a bit more before the heat of compression sends pre-spark in-cylinder temperatures too high.

Gm Gen V Lt1 Engine Cylinder Heads 6/21

Even with the beauty cover removed, there are no fuel rails or injectors visible atop the LT1; you’ll need to pull the intake manifold to see them. Note how high the intake port openings are in the cylinder heads.

The second major enabler is the Gen 5’s exceptionally well-developed combustion system, which engineers said they had to design “from scratch.” This is no exaggeration, because while GM (and virtually every other major manufacturer) has experience with DI on overhead-cam, multi-valve engines, to date nobody had incorporated DI into an OHV engine. Perhaps contrary to what one might assume, the motion of the air/fuel mixture within the cylinder is actually more complex in a 2-valve-per-cylinder engine, and as an additional hurdle, more mixture swirl is needed for DI to yield optimal combustion. To deal with all of this, main combustion chamber variables that needed to be tweaked included chamber size, injector nozzle and spark plug placement, valve sizes and angles, and the intricate facets of the piston crown. According to Mr. Rydzewski, all of these parameters have influence and getting them just right was critical “to ensure that the air comes in in just the right way, that its motion is just right inside the cylinder, and that it exits in the right way.” Also crucial was ensuring that during the actual combustion process, “the ignition event is in the center of the chamber and you have a nice outward flame propagation where you can get as much out of what you burn as possible.” GM says computational analysis for the Gen 5 required more than 10 million hours of CPU time, with nearly two-thirds of that devoted to the combustion system, so a whole lot of iterations were evaluated before a near-finalized cylinder head design was even prototyped.

The resulting head features hollow valves spec’ing out at 1.59 inches on the exhaust and a large 2.13 inches on the intake, the former sodium filled and the latter nitrided in the interest of durability (this process was used on some LS engines, but this is its first performance application). The orientation of the valves is different too: each new generation of small-block has featured shallower valve angles than the previous, moving from 23 degrees on the original to 15 degrees on the Gen III and IV (the LS7 was shallowest at 12 degrees). The Gen 5 continues this tradition, with its intake valves being rolled to just a 12.5-degree angle from vertical and an even shallower 12 degrees on the exhaust. Hot rodders have long known that shallower valve angles allow for smaller-volume combustion chambers and help minimize valve shrouding as the valves near maximum opening, hence increasing breathing potential.

Speaking of increased breathing potential, the use of DI also facilitated a higher-flowing, much straighter airflow path to the intake valve. “This is a huge benefit from DI systems,” says John Rydzewski. “With the new small-block we didn’t have to worry about a PFI injector and the correct angle for it, or a fuel rail and where that was going to be, and the need to often put a bump into the intake port.” The benefits of not having a fuel injector in the intake port don’t end there. “With DI, what goes through that port and past the valve is just air. With a PFI system, the fuel displaced some of the air, so the volumetric efficiency was worse by having the fuel run past the valve.”

MORE PHOTOS

VIEW FULL GALLERY

COMMENTS

subscribe to the magazine

get digital get print
TO TOP