Subscribe to the Free
Newsletter

How to Get 701 hp out of a Naturally Aspirated LT1 Engine

Katech Street Attack 427 LT1: Channeling the LS7 to make big naturally aspirated power

Barry Kluczyk Aug 3, 2016
View Full Gallery

The LT1 engine family that debuted about three years ago in GM fullsize trucks and the C7 Corvette—and more recently the sixth-gen Camaro—is a technological marvel. Technologies such as camshaft phasing and direct injection have driven Chevrolet’s small-block architecture into the 21st century with power and efficiency that Ed Cole, the father of the small-block, couldn’t have dreamt of in 1955.

Take, for example, the max output of the original 265-cubic-inch (4.3L) small-block. In 1955, with a four-barrel carb it was rated at 195 gross horsepower. That’s about 0.73 horsepower per cubic inch, with nothing subtracted for running accessories.

In contrast, the 376-cubic-inch (6.2L) LT1 offered in the 2016 Corvette Stingray is rated at 460 horsepower with the optional exhaust system. That’s 1.22 horsepower for every cube—a nearly 70 percent increase in efficiency from the same basic, naturally aspirated air pump design.

That’s great, but renowned racing and performance street-engine builder Katech has stretched the envelope even further with a naturally aspirated 427-cubic-inch (7.0L) LT1 that produces right around 700 horsepower—701 hp, in fact, as we witnessed during a recent visit to their Detroit-area dyno facility. That’s a stunning 1.64 horsepower per cubic inch—a ratio that scales very favorably with forced-induction combinations, including Chevy’s own supercharged LT4, which produces around 1.73 horses per cube in the Corvette Z06.

“A supercharger is a great tool for building power, but many enthusiasts—particularly those who routinely take their car to the road course—prefer a naturally aspirated combination,” says Jason Harding, Katech’s Director of Aftermarket Operations. “Supercharger heat soak, as well as coolant and oil temperatures, are real concerns during long tack sessions, and in that regard a naturally aspirated engine offers greater consistency in power delivery. That’s what we’ve strived to develop.”

In fact, Katech has been grinding away on LT1 performance since the engine’s introduction, evolving and refining their combination to not only achieve lofty performance targets but also achieve them with a higher degree of refinement. That’s what brought us to their shop for this story. We were already familiar with their 427 LT1 engine package, but a number of significant changes, including a change in the bore and stroke, prompted us to revisit it.

First and foremost was the change in the bore and stroke dimensions. Previously, Katech had dropped a 4.100-inch stroker crank into a slightly honed stock block, but the result was that the pistons were dropping a little below the bottom of the cylinders and contributed to more blow-by than they were comfortable with, which worked against Katech’s refinement goals. The solution was changing to the LS7’s 4.125-inch bore and 4.000-inch stroke dimensions, which shortened the pistons’ respective journeys.

The rub in that plan was the fact that the diameter of the iron cylinder liners within the LT1’s aluminum block were only 4.06 inches. Stretching the bores as far as needed required cutting out the stock sleeves, boring out the block slightly, and re-sleeving the block. It is a time-consuming and admittedly costly procedure, but Harding says the results are worth it.

“The 4.000-inch stroke allows for a better piston design and reduced blow-by,” he says. “Our first 4.070-inch x 4.100-inch engine didn’t meet Katech’s blow-by standards, so we went back to the drawing board.”

Katech also swapped the stock intake for an MSD Atomic AirForce manifold and capped it with one of their new 103mm throttle bodies.

“The new intake-and-throttle body combination gave us the airflow we needed to push over 700 horsepower,” says Harding. “It’s a must for making this kind of naturally aspirated power.”

What Katech didn’t mess with was the general configuration of the combustion system. They used ported heads, but the combustion chambers and the unique topography of the factory piston head design are left essentially untouched to ensure compatibility with the direct injection fuel system. It relies on the shape of the piston head to direct the fuel spray from the injector. GM spent zillions of hours getting it just right, and altering it can cause significant performance and driveability issues.

The engine also retains cam phasing, but it’s modified via tuning and a physical limiter to work with Katech’s proprietary cam specs—the numbers of which we couldn’t pry out of them. Nevertheless, the dyno performance and overall tractability of the engine suggested they nailed the grind just right. Harding did tell us that the lobe profile was very similar to their popular K501 for the LS7, which is very driveable on the street. Katech expects comparable or better driveability on the LT1 due to direct injection.

The 427 LT1 also features Katech’s new dry-sump oil pan made exclusively for them by ARE, which you can see in this story’s lead photo. Note the secondary scavenge pump mounted on the engine. The stock internal scavenge and pressure pumps remain, but the secondary external dry-sump pump pulls oil out of the crankcase and into the dry sump tank very quickly. The external pump is also more powerful than the production gerotor scavenge pump and it’s able to pull a significant vacuum on the crankcase, which helps ring sealing and oil control in a track-focused engine. Katech will sell the 427 LT1 with the factory dry-sump system (or in the case of the Camaro, wet-sump system) for street cars and with the enhanced dry-sump system for track cars.

And while dropping this engine in a C7 Stingray is a no-brainer, we’re more intrigued about its potential in the sixth-gen Camaro SS. With more horsepower than the estimated output for the forthcoming supercharged Camaro ZL1—which will assuredly come with a weight penalty over the SS—it sounds like the latter-day successor to the LS7, offering exceptional performance in a lightweight package that isn’t susceptible to the heat soak and oil temperature concerns of a supercharged engine. Sounds like the perfect choice for a road-and-track warrior.

Check out the accompanying photos and see how 700+ naturally aspirated horsepower was built out of the latest small-block architecture.

Ed Cole would be proud.

Dyno Chart
RPM Torque Horsepower
2,999 545 311
3,219 527 321
3,437 526 342
3,632 527 366
3,816 532 385
4,015 542 413
4,229 566 455
4,403 598 500
4,605 614 537
4,814 612 562
5,011 616 587
5,202 625 621
5,400 619 638
5,608 611 650
5,804 606 671
6,010 598 683
6,201 586 691
6,412 571 696
6,606 558 700
6,806 543 701

Katech 427 Lt1 Engine 2/26

01. The Katech 427 LT1 starts with the stock block as its foundation, but its iron cylinder sleeves stretch to only 4.06 inches in diameter. To accommodate the 4.125x4.000 LS7-spec bore and stroke dimensions, those sleeves are cut out of the block and the block itself is bored slightly to accommodate larger-diameter sleeves.

Cast Ductile Icon 3/26

02. Made of centrifugally cast ductile iron, the replacement sleeves offer a tensile strength of around 120 ksi versus the approximately 30 ksi tensile strength of the conventional gray cast iron used in most OE engines. Ductile iron is also relatively plastic, meaning it flexes more than comparatively brittle cast iron, which helps prevent cracking of the sleeves.

Katech Stroker Package 4/26

03. All engines in the “LT” family feature standard oil-spray piston cooling that drenches the underside of the pistons and cylinder walls to help maintain optimal combustion temperatures and increase durability. Unfortunately, the stock oil jet design (top) doesn’t mesh with Katech’s stroker package so they developed custom jets based on versions from their high-performance LS7 engines.

Callies 4340 Forged Steel Crankshaft 5/26

04. Katech uses a rigid Callies 4340-forged steel crankshaft with a 4.000-inch stroke to complement the bigger bores to achieve the 427-cubic-inch displacement. The slightly shorter stroke than the company’s previous 427 package helps enhance refinement and reduce blow-by by keeping more of the piston within the cylinders at the bottom of the stroke.

Cross Bolted Modular Iron Main Caps 6/26

05. The cross-bolted nodular iron main caps are tightened down with factory torque-to-yield fasteners that provide excellent clamping strength and location accuracy.

Katech Camshaft 7/26

06. Thanks to the standard variable valve timing system, achieving significant power gains in an LT1 engine is much tougher with a basic camshaft swap. Katech uses one based on their street/track “K501” grind, but would rather keep mum on its specs. It’s used with a physical phasing limiter in addition to boundaries dialed in via tuning.

Aluminum Forged Pistons 8/26

07. The pistons are an exclusive forged aluminum design made for Katech by Diamond Pistons. They retain the unique head topography of the originals—note the unique “scoop” in the center—because it’s essential for optimal combustion with the direct injection fuel system. The compression ratio for the stroker 427, however, is raised from the stock 11.5:1 to 12.5:1.

Callies Compstar H Beam 9/26

08. Forged Callies Compstar H-beam connecting rods provide greater strength than the factory rods and feature the stock 6.125-inch length, giving the engine a rod/stroke ratio of 1.53:1—a more optimal ratio than the previous 427 combination’s 1.49:1.

10 Tray Design Oil Scaper 10/26

09. Compared to previous LS engines, the LT1 has a unique windage tray design with an oil scraper designed to improve oil flow control and bay-to-bay breathing. It requires a bit of clearance enhancement to prevent interference with the connecting rods.

Katech 700 Hp Lt1 Engine Build 11/26

10. Camshaft degreeing is vitally important in an engine with variable valve timing, and Katech uses this super-trick, electronically measuring apparatus to do the job. Katech says they spent countless hours playing with the camshaft phasing system to learn what the engine likes the best—and they’re keeping their findings close to their chest.

Katech 700 Hp Lt1 Engine Build 12/26

11. Cam phasing is retained on the 427 LT1 but the standard Active Fuel Management (cylinder deactivation) system is not, requiring blocking off the oil feed provisions for the stock “collapsible” hydraulic lifters and replacing the lifters with conventional hydraulic versions.

Katech Valley Block Off Plate 13/26

12. Katech has also developed a new valley block-off plate to replace the stock version, which has provisions for Active Fuel Management. The new aluminum plate also serves as the mounting pad for the direct injection system’s camshaft-driven high-pressure fuel pump.

Katech Lt1 Cylinder Head 14/26

13. The LT1 cylinder head design represents another significant departure from the LS architecture. Katech says their testing shows it generally flows better than an LS3 head, but not quite as well as an LS7 head. The rectangular intake ports are somewhat straighter than an LS3’s ports, but with a slight twist to enhance mixture motion.

Katech Lt1 Engine Cnc Ports 15/26

14. Katech CNC-ports the intake and exhaust ports in-house to enhance airflow for the greater needs of the larger-displacement 427. It is a delicate operation because it is easy to break through the walls of the intake ports into the mounting holes of rocker arms.

Lt1 Cylinder Head Design 16/26

15. Compared to the LS3 cylinder head design, the LT1 head features a smaller, 59cc combustion chamber designed to complement the volume of the piston’s dish—and consequently, machining the chambers is not a good idea. Doing so jacks with the direct injection system’s finely tuned atomization, which could severely affect performance.

Katech 700 Hp Lt1 Engine Build Arp Head Studs 17/26

16. On go the heads. Katech uses ARP head studs in place of the factory cylinder head bolts. Note the raised position of the intake ports, compared to an LS head, and the cavities directly beneath the ports. At the bottom of each cavity is a hole for a fuel injector, which protrudes directly into the combustion chamber. The four mounting pads—beneath and to the right of each port—are for the fuel rail, not the intake manifold.

Katech 700 Hp Lt1 Engine Build Beehive Springs 18/26

17. Katech upgrades the stock beehive springs to lightweight PSI LS1511 384 lb/in springs to accommodate the new camshaft. They’re used with the stock rocker arms. Because of the reversed position of the valves on an LT1 engine, compared to the LS family, there are no longer offset intake-side rockers.

Katech 700 Hp Lt1 Engine Build Stock Fuel Rails 19/26

18. The stock fuel rails are installed next and connected to the engine-driven high-pressure fuel pump, which sends fuel to the injectors at around 2,175 psi. The fuel pressure for a conventional port-injected engine is around 60 psi and a carburetor is about 8 psi. The direct injection’s engine-mounted pump supports the traditional in-tank fuel pump.

Atock Lt1 Injector 20/26

19. Katech modifies the stock LT1 injector, achieving a 25 percent greater flow rate to feed the big-inch LT1. The direct injection injectors are like the Piezo-type injectors used in modern diesel engines for incredibly precise fuel control.

Atomic Air Force Intake Manifold Msd 21/26

20. The stock intake manifold is replaced with MSD’s new Atomic AirForce two-piece manifold, which Katech says has proven to be worth up to 30 hp at high rpm when used with a high-flow throttle body. The two-piece design allows the internal runners to be modified.

Katech Throttle Body 22/26

21. Katech’s new 103mm throttle body complements the high-flow MSD intake manifold, offering the airflow capability required to feed the large-displacement LT1 at high rpm. Its opening is nearly 20 percent larger than the stock 87mm throttle body.

Katech 700 Hp Lt1 Engine Build Valve Covers 23/26

22. Dressing up the final engine assembly is Katech’s LT-family valve covers and coil relocation brackets. It’s a combination that looks light years better than the stock valve covers and coils (as shown in the dyno test image).

Katech 700 Hp Lt1 Engine Build Tuned E92 Controller 24/26

23. The completed engine was tuned with the E92 controller for a Corvette Stingray. It has provided another learning curve for the performance industry over previous LS engine performance because it represents a Bosch platform and more engine systems, such as oiling, are directed by it.

Katech 700 Hp Lt1 Engine Dyno Testing 25/26
Katech 700 Hp Lt1 Engine Dyno Results 26/26

24. On the dyno, the Katech 427 LT1 delivered 701 horsepower at 6,800 rpm and 625 lb-ft of torque at 5,200 rpm. The high-rpm capability is astounding, but just as important is torque production. From 3,000 rpm until the tachometer needle breaks off, the engine produces no less than 520 lb-ft—grunt that will quickly erase any second thoughts about not selecting a supercharger.

Sources

Katech Inc.
Clinton Township, MI 48035
586-791-4120
www.katechengines.com
MSD
El Paso,
915-857-5200
MSDPerformance.com

MORE PHOTOS

VIEW FULL GALLERY
X

Connect With Us

Get Latest News and Articles. Newsletter Sign Up

sponsored links

subscribe to the magazine

get digital get print
CLOSE X
BUYER'S GUIDE
SEE THE ALL NEW
NEWS, REVIEWS & SPECS
TO TOP