How To Pick The Right Spring Rate - Rated A For Fun

With The Help Of Chassisworks, We Show You How To Pick the Right Spring Rate For The Perfect Balance Of Ride And Handling

Stephen Kim Feb 1, 2010 0 Comment(s)

Hitting The Sweet Spot
If the role of the springs is so simple, then why the big stink about picking the perfect set for your car? It all comes down to making sure that the shocks can operate in their ideal range of motion, and the importance of the shocks in relation to overall handling performance. "In my opinion, the only thing more important than the shocks in regards to handling is the tires. By dampening the motion of the springs, shocks control the rate of weight transfer in a corner," Chris explains. "Optimizing the rate of weight transfer is the essence of good handling, and the shocks control how the entire suspension operates. That said, shocks have a very limited range of motion, and their performance degrades dramatically as they reach the extremes of their travel. It's up to the springs to make sure the shocks operate in their sweet spot, which is why proper spring selection is so important. If your car sits too high or too low due to having the wrong springs, it will take the shocks out of their sweet spot and they'll never perform well. People often think there's something wrong with their shocks, but 80 percent of the time perceived shock problems are a result of not having the right springs on their car."

1002chp_05_z How_to_pick_the_right_spring_rate Front_suspension_system 2/17

Shock Travel
A typical A-arm-style front suspension has between 5 to 7 inches of wheel travel. However, the wheels are mounted farther outward than the springs and shocks, and travel in a longer arc. That means that the 5 to 7 inches of wheel travel necessary for a smooth ride and secure handling equates to just 3 to 4 inches of total shock travel. When attempting to determine the correct spring rate for a car, the trick is to set the ride height so the chassis rests in the shocks' sweet spot within this small 3- to 4-inch window. A solid-axle rear suspension, on the other hand, is a bit more forgiving. Since the shocks are usually bolted directly to the rearend housing, the motion ratio of the wheels is more proportional to the total travel of the shocks. As a result, the shocks mounted to a solid-axle rear suspension typically have 5 to 6 inches of travel.

How much of a shock's range of travel is allocated to compression and rebound depends on a car's intended use. Street cars require more compression than rebound, while drag cars are the exact opposite. Cars built for the road course or autocross, on the other hand, can benefit from an even split of compression and rebound. "A street car needs about 60 percent of its travel in reserve for compression, and the other 40 percent for rebound (60/40). The bias toward compression improves ride quality and has a built-in safety guard for unexpected road hazards," Chris explains. "Street/strip cars need roughly 40 percent of their shock travel for compression and 60 percent for rebound, as the extra extension assists in front-to-rear weight transfer. Since road course and autocross cars usually run on smooth surfaces which require less compression, they can benefit from a 50/50 split. However, variations in suspension geometry or track conditions may necessitate altering the travel percentages to prevent the shocks from bottoming- or topping-out."

Whether you bias the shock travel toward compression, rebound, or keep it neutral, the first step in accomplishing this is determining the total travel of your shocks. Chassisworks publishes the shock travel specs of all its shocks and struts, as do many other manufacturers. It just takes some research. Next, figuring out how much the springs and shocks should be compressed at ride height to get the shocks in their sweet spot is merely an exercise in simple math. A street-oriented setup (60/40) requires that the shocks and springs collapse 40 percent from their free length at ride height. Consequently, a shock with 4 inches of travel should compress 40 percent, or 1.6 inches, at ride height. That results in 40 percent of travel reserved for rebound and 60 percent, or 2.4 inches, reserved for compression.




Connect With Us

Get Latest News and Articles. Newsletter Sign Up

subscribe to the magazine

get digital get print